The Bohr inequality for ordinary Dirichlet series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bohr and Rogosinski Abscissas for Ordinary Dirichlet Series

We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain G ⊂ C are independent of the domain G. Furthermore, we obtain new estimates about these abscissas. 1. Preliminaries Let us recall the theorem of H.Bohr [19] in 1914. Theorem 1.1. If a power series

متن کامل

Matrix Order in Bohr Inequality for Operators

The classical Bohr inequality says that |a+b| ≤ p|a|+q|b| for all scalars a, b and p, q > 0 with 1 p + 1 q = 1. The equality holds if and only if (p− 1)a = b. Several authors discussed operator version of Bohr inequality. In this paper, we give a unified proof to operator generalizations of Bohr inequality. One viewpoint of ours is a matrix inequality, and the other is a generalized parallelogr...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2006

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm175-3-7