The Bohr inequality for ordinary Dirichlet series
نویسندگان
چکیده
منابع مشابه
Bohr and Rogosinski Abscissas for Ordinary Dirichlet Series
We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain G ⊂ C are independent of the domain G. Furthermore, we obtain new estimates about these abscissas. 1. Preliminaries Let us recall the theorem of H.Bohr [19] in 1914. Theorem 1.1. If a power series
متن کاملGeneralization of Caratheodory’s Inequality and the Bohr Radius for Multidimensional Power Series
متن کامل
Matrix Order in Bohr Inequality for Operators
The classical Bohr inequality says that |a+b| ≤ p|a|+q|b| for all scalars a, b and p, q > 0 with 1 p + 1 q = 1. The equality holds if and only if (p− 1)a = b. Several authors discussed operator version of Bohr inequality. In this paper, we give a unified proof to operator generalizations of Bohr inequality. One viewpoint of ours is a matrix inequality, and the other is a generalized parallelogr...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2006
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm175-3-7